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Abstract

Temporal Action Localization (TAL) aims to automate the detection of activities
within a video stream and output the start and end timestamps. The Boundary
Matching Network [3] (BMN) introduced by Lin et. al. is a landmark paper
in this domain that achieves state of the art performance on the two large-scale
datasets, ActivityNet1.3 [1] and Thumos14 [2]. In this work, we used the two-
stream network [5]’s pre-trained feature embeddings for videos in the ActivityNet
dataset to implement the baseline Boundary Matching Network (BMN) for TAL.
On reproducing the baseline, we noticed severe overfitting and set out to address
it. We applied several different data augmentation and ensembling techniques
to achieve a superior generalization performance. Our contributions 2 include
ablation studies using temporal shift modules, adding global information using
Squeeze and Excite modules, ensembling baseline with models trained on reversed
video features and labels. We are able to achieve a 0.9 point AUC improvement
over our reproduction of the baseline BMN model. We further contribute by
conducting a detailed error analysis of the dataset and provide examples where
our model performs well but the ground truth is mislabeled.

1 Introduction

The amount of video content available on the Internet has grown rapidly in the past decade. Automat-
ically identifying when a specific action starts and ends within a video clip is of immense practical
value when applied to tasks like elderly care or surveillance footage analysis, hence has become a
research discipline of its own. This is a challenging task for untrimmed video content of various
lengths as they can contain multiple action instances and background scenes in one video and be
extremely unconstrained in terms of space and time.

Long, untrimmed video content can be processed in two steps, temporal action localization and action
classification, which can occur either sequentially or simultaneously (independently of one another).
Temporal action localization identifies the relevant portions of a video by proposing the start and end
timestamps using a probabilistic model, whereas action classification entails understanding the types

∗Equal contributions. Authors listed alphabetically.
2Our code is available at https://github.com/11785-Group-9/BMN-Boundary-Matching-Network
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of actions being performed in those relevant portions. While impressive progress has been made on
both fronts, we focus on the first and the more difficult task of temporal action localization. We aim
to improve upon the state-of-the-art (Lin et. al. (2019)), which had utilized the Boundary-Matching
Network (BMN) that evaluates confidence scores of densely distributed proposals then combines
them into a single confidence map to generate proposals with precise boundaries.

The rest of this report is structured as follows: In Section 2, we detail a chronological literature
review of how this topic has been studied before and after the BMN network was proposed and our
motivation for ultimately selecting BMN as our baseline model. We present a structural overview
of the model and its training objectives in Section 3 and illustrate our experiment setup, evaluation
methods, and results of successfully replicating the baseline model. Finally, in Section 5, we propose
several methods to improve upon the state-of-the-art that we plan to try out in the latter half of
this project. These include incorporating a combination of local and global context, implementing
temporal perturbations such as shifts to increase model robustness, and using an ensemble of models
trained on original and reversed video features.

2 Literature Review

For the TAL task, an overwhelming majority of methods prior to BMN, including the Single-Stream
Temporal Action Proposals (SST) [6] and Deep Action Proposals (DAPs) [7], focused on a “top-down”
approach which generates proposals by sliding multi-scale temporal windows in regular intervals then
evaluating confidence scores of the generated windows. Due to the very nature of sliding windows of
fixed lengths, these top-down approaches were found to have neither temporally precise nor flexible
boundaries.

More recent research adopts a “bottom-up” approach that tackles the issue by first locating the
temporal boundaries using confidence scores at each frame in the video and then smartly combining
them as candidate proposals and evaluating an overall confidence score for each candidate proposal.
Boundary-Sensitive Network (BSN) proposed by Lin et. al. (2018) [4] was the first to adopt such a
bottom-up approach in an effort to utilize temporally local features. In BSN, proposals are defined as
probabilistic intervals within the untrimmed video that contain actions with the local probabilities of
each point lending to candidate start points and end points for building out a proposal. The network
then globally matches these candidate starting and ending points to generate proposals.

However, BSN proved to have several faults: (1) proposal feature construction and confidence
evaluation procedures are conducted for each proposal resulting in computational inefficiency; (2)
the proposal features constructed in BSN are too simple to capture sufficient temporal context; (3) it
does not present a unified framework but is instead distributed across multiple stages. In order to
overcome these drawbacks, Lin et. al. (2019) introduced the Boundary-Matching Network (BMN)
[3] that evaluates confidence for all proposals simultaneously with richer temporal context. Within a
BMN, each proposal is a matching pair of its starting and ending boundaries that are combined into a
two-dimensional confidence map to represent the proposals with temporal duration and contiguous
starting boundaries.

2.1 Baseline Selection

Very recently, Proposal Relation Networks (PRN), Wang et. al. (2021) [9] achieved state-of-the-art
on the ActivityNet dataset by building upon BMN. This was accomplished in two steps: first, the
authors introduced minor temporal perturbations in the features to make the model more robust to
temporal noise, then they designed a self-attention mechanism to capture dependencies between
action proposals and combined them to generate proposals with higher confidence.

Another recent research direction, adopted by Bagchi et. al. (2021) in AVFusion [12], is to incorporate
features based on the audio modality to improve prediction power with minimal modifications to
the base architecture handling video-based spatio-temporal features. While this method achieves
state-of-the-art on a much smaller Thumos’14 dataset, PRN beats it by a margin for the larger and the
more interesting ActivityNet-1.3 dataset.

Overall, PRN and AVFusion both largely borrow their base architecture and setup from BMN and
contributed a few improvements through techniques including data augmentation and attention
mechanisms. For this project, we are interested in understanding and building out the base model

2



architecture then designing our own simulation and ablation experiments. Thus, we selected the
BMN as our baseline model.

3 Baseline Model

3.1 Feature Extraction

To extract the features of each video, we used a two-stream network proposed by Simonyan et.
al. [5] to generate a fixed size vector for each interval. The two-stream network is popularly used
[16; 17] in many video analysis models because of its architecture’s relevance to spatial and temporal
information present in videos. Specifically, the two-stream network uses two different networks to
detect and construct features based on spatial and temporal information separately and then fuses the
output of the two networks to produce features that encode this geo-temporal information.

When extracting the features, each video will have a corresponding feature embedding (F) of size
C × T where C is the size of the embedding vector for each frame, which is 400, and T is the number
of frames extracted from the video, which is 100. The two-stream network divides every video into
100 different frames that are spaced equally apart so that every video will have the same amount of
frames being extracted. In this work, we load the features from the official repository to avoid the
long computation time of the feature extraction process.

The training labels for the model consist of three different variables: the confidence score (GC),
the start match score (GS), and the end match score (GE). GC is a T × T matrix where the rows
represent the starting frame and the columns represent the ending frames. Therefore, the confidence
score matrix could represent every possible interval within the video. The values of the matrix
are computed using the Intersection over Union (IoU) between the corresponding interval and the
interval from the ground-truth as shown in equation 3 where A is the indexed interval and B is the
ground-truth interval. Similarly, the GS and GE are vectors of length T where each value represents
the likelihood of that point being a start or end of an action respectively. To calculate the overlap, the
start and end actions of the labels are converted from specific frames to intervals of frames such that
overlaps could be calculated. The overlaps are consequently calculated using equation 4 where A is
the indexed interval and B is the ground-truth interval.

NumberofRequestsHTTP200

NumberofRequestsTotal
≤ 0.8 (1)

NumberofRequestsTotal ≥ 5000 (2)

IoU(A,B) =
|A ∩B|
|A ∪B|

(3)

Overlap(A,B) =
|A ∩B|
|A|

(4)

3.2 Model Overview

As mentioned in Section 2.1, we follow Boundary Matching Network (BMN) as our baseline. The
BMN model takes in the extracted features from the two-stream network as discussed in the section
above and generates proposals with precise temporal boundaries. The model also generates confidence
scores corresponding to each proposal that evaluates how probable each proposal is. Using these two
outputs, we are able to rank and retrieve the most probable start and end times for a particular action.

The BMN model comprises of three separate modules, namely the Base Module, the Temporal
Evaluation Module, and the Proposal Evaluation Module. As visualized in Figure 2, the Base Module
first encodes the input feature sequence, and the output feature sequence is then used as inputs to
both the Temporal Evaluation and Proposal Evaluation Module.
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Figure 1: BMN-Framework Lin et. al. [3]

Figure 2: Proposal Generation Lin et. al. [3]

3.2.1 Base Module

The Base Module consists of two one-dimensional convolutional layers with ReLU activations. This
module serves as the backbone feature extractor of the network. It outputs a shared feature sequence
that is used for both the Temporal Evaluation Module and the Proposal Evaluation Module.

3.2.2 Temporal Evaluation Module

The purpose of the Temporal Evaluation Module (TEM) is to evaluate the probabilities that a particular
temporal location is the start or end time of an action for all possible temporal locations in the video.
This is done by passing the output feature sequence from the Base Module through two 1-Dimensional
convolutional layers and then applying the sigmoid-activation function. This will result in a set of
two probability sequences that quantifies how likely a particular temporal location is a start time or
end time respectively.

These probability sequences will be used to generate possible proposals. As visualized above, we
consider start and end times with high probabilities and match them to obtain a possible proposed
duration for the action in the video. A Soft-Non-maximum Suppression (Soft-NMS) algorithm is
also used to remove unlikely proposals to consider fewer proposals.
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3.2.3 Proposal Evaluation Module

The Proposal Evaluation Module (PEM) generates a Boundary-Matching confidence map that
provides confidence scores for all possible proposals.

First, the PEM applies the Boundary-Matching (BM) layer that transforms the 1-dimensional input
feature sequence from the Base Module into a 2-dimensional feature map. This is done by uniformly
sampling across the temporal dimension in the input sequence. According to the paper, the generated
feature map will contain rich features and temporal contexts for every proposal.

Next, the PEM applies a set of convolutional layers to further extract features and the sigmoid
activation is applied to generate the BMN confidence scores. More specifically, two types of maps
are generated MCC and MCR as they are required for the binary classification and regression
loss function respectively during training. Using the confidence scores, we can rank the proposals
generated from TEM as explained in the section above and retrieve the most probable start and end
times that contain an action.

3.3 Training Objective

LTotal = LTEM + λ1 · LPEM + λ2 · L2(θ) (5)
LTEM = Lbl(PS , GS) + Lbl(PE , GE) (6)

LPEM = Lbl(MCC , GC) + LR(MCR, GC) (7)

The loss of the BMN model is formulated as a multi-task loss function and can be broken down into
three portions: loss contributions from TEM, loss contributions from PEM, and regularization. The λ
terms quantify the weightage of the contributions of each portion and set to 1 and 0.0001 for λ1 and
λ2 respectively.

The regularization term is taken as the L2 regularization which takes the sum of the squared values of
the model’s parameters. TEM’s loss sums the binary logistic loss (Lbl) for both the generated start
probabilities (PS) and end probabilities (PE), where the binary logistic loss is defined in equation
8, where lw is the window length and bi = sign(gi − 0.5). gi is the confidence score assigned to a
particular proposal at time i. Moreover l+ =

∑
bi and l− = lw − l+. Consequently, α+ = lw

l+
and

α− = lw
l− . Lastly, pi is defined as the probability score assigned at time i.

Lbl(P,G) =
1

lw

lw∑
i=1

(α+ · bi · log(pi) + α− · (1− bi) · log(1− pi)) (8)

Lastly, PEM’s loss is defined as the sum of a binary logistic loss and a regression loss (mean squared
error). The binary logistic loss is taken between MCC and GC , while the regression loss is taken
between MCR and GC .

4 Feature Enhancements

In the baseline model, we noticed severe overfitting on the two-stream dataset after approximately 8
epochs. This is likely because the two-stream network represents each video as a C×T = 400× 100
length tensor, regardless of the length of the video. We hypothesize that this representation of each
video using 40,000 numbers might contribute to loss of information and might be the reason for quick
overfitting. However, for the scope of this work, we did not have the capacity to process raw videos
from scratch. Consequently, our contribution in this paper mostly pertains to proposing methods to
combat overfitting using the two-stream representations of ActivityNet videos.

4.1 Temporal Shifts

In this data augmentation method, we propose to shift some randomly selected features along the
temporal dimension by several time steps as seen in figure 3. In this way, we can exchange information
with video frames in neighbouring timesteps. Temporal shifts have been shown (TSM [15], Lin
et. al. 2019, and PRN [9], Wang et. al. 2021) to be an effective way to improve performance in
video recognition tasks without additional compute. Effectively, we are applying a data augmentation
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Figure 3: Temporal Shift Module, Wang et. al. [9] and Lin et. al. [15]

method to make the trained model more generalizable. Due to the offline nature of the video
localization task and the BMN model, bidirectional shifts were used. There are two hyperparameters
to tune when shifting: the percentage of features we want to shift, and the maximum amount by which
we want to shift a feature. We experimented with moving 10, 20, and 30% randomly selected features
left or right by a randomly selected integer step size between 1 to 10%, and found shift probability
of 20% and max shift of 5% to be the best hyperparameters over this search space. In Section 6.3,
Ablation Studies, we use these hyperparameters to compare temporal shifts to other modules.

4.2 Global Information

For our second method, we propose a set of methods to augment our feature vectors obtained from
the Two-Stream Network with global information. By concatenating information about the global
context (the entire video clip), we hypothesize that the features at every time-step will have increased
information, thus allowing the model to learn more and make better predictions.

4.2.1 Global Mean

Firstly, a naive approach was tested by simply averaging values of the features across all time-steps

fglobal =
1

T
∗

T∑
t=1

Ft (9)

where the fglobal is a C × 1 vector representing the global mean feature for the video and Ft is
a C × 1 vector representing the feature at time t. Next, we augment the initial feature vectors by
concatenating fglobal with the original features at every time-step t. In the end, we have Faugmented

as a C ∗ 2× T matrix where the feature vector at each time-step contains both the original Ft and
fglobal. Faugmented is then used as the training input.

4.2.2 Global Features from Learnable weights

Instead of simply taking the average values of features as the global information, a weight matrix
(Wglobal) is used to produce a linear projection of the global information. Wglobal will be added to
the model as a learnable parameter so that through training, Wglobal learns to extract more relevant
global information from the features.

fglobal = Ft ·Wglobal (10)

4.2.3 Squeeze and Excitation

In the final iteration of utilizing global information, we took inspiration from research by Hu, Jie,
Li Shen, and Gang Sun on Squeeze and Excitation networks [18]. The research proposes using a
Squeeze and Excitation module to explicitly model channel-wise inter-dependencies across spatial
dimensions for input images. This is then used to scale the channel values accordingly. Adapting to
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our application, we use a similar Squeeze and Excitation module to model inter-dependencies across
the 100 time-steps.

fmean =
1

T
∗

T∑
t=1

Ft (11)

s = σ(W2 · δ(W1 · fmean)) (12)

Fweighted = F ∗ s (13)

As seen from the equations above, first, we average each feature value over all time-steps which
mimics the squeeze operation in the original research. This serves to describe how expressive a
particular feature is throughout the entire video. To obtain the feature-wise inter-dependencies, we
perform two linear transformations with rectified-linear[19] and sigmoid non-linearities respectively
(excitation operation). This provides us with the scaling factors for every feature and this is used to
scale the original video features accordingly as shown in the final equation.

4.3 Reverse Ensemble Method

Another proposed method to improve the model is to train two BMN models instead of one. The
main difference between the two trained models is that the first model would be trained on the normal
features just like the baseline model while the second model is trained on the reversed features and
labels. This means that the reversed model would be fed the video features in reversed order while
the labels of the actions in the reversed videos are also reversed. To achieve this, the C × T features
of each video would be reversed on the first axis while the ground-truth label segments of each video
are also reversed before creating the ground-truth maps (GC , GS , GE) for the loss functions. This is
done so that the actions in the labels would correspond to the actions in the videos.

After training the two models, we ensemble the results of the two models together during inference
as seen in figure 4. To achieve this, the corresponding reversed model output (MCC , MCR, PS , PE)
would be reversed back to forward time. After that, the two model outputs would be ensembled before
inference is performed. By combining the model trained on the reversed features, the output should
theoretically be more receptive to frames before and after the actions similar to the Bi-Directional
LSTM model.

Figure 4: Reverse Ensemble Pipeline

5 Dataset

We trained our implementation of the BMN model on the ActivityNet-1.3 dataset [1] which contains
videos encompassing a large range of human activity. It features 200 different types of simple
human activities compiled to approximately 849 hours worth of videos collected from YouTube. The
dataset’s annotations are crowd-sourced via the Amazon Mechanical Turk and classify the types of
actions performed in the video and the start and end timestamps of each action. Specifically, version
1.3 contains a total of 19,994 untrimmed videos and is divided into three separate subsets: training,
validation, and testing data, by a ratio of 2:1:1. Each video includes an average of 1.41 activities
annotated with temporal boundaries and the test videos’ ground-truth annotations are not made public.
Since ActivityNet is the most popular benchmark in the temporal activity detection and localization
domains and used in many of the previous related works cited above, it serves as a good way to
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compare our performances with the existing state-of-the-art. We used pre-extracted features of each
video based on the two-stream network [5] and did not apply any further preprocessing to the dataset
other than data augmentation techniques during our experiments.

6 Experiments

6.1 Evaluation Metrics

To evaluate the proposals generated by the model, we calculated the Average Recall (AR) over
different IoU thresholds ranging from 0.5 to 1.0 with 0.05 increments. This would mean that any
labeled proposal with an IoU score that is more than the threshold would be labeled as correctly
labeled and vice versa. Next, the AR is then plotted over different Average Number of proposals
(AN) such that we could obtain the area under curve (AUC) as our primary evaluation metric. In
our case, AN is a range between 1 and 100 proposals taken from the model’s output. Therefore, we
would compute the AR across the different AN ranges, and to call an AR at different AN values, we
would use the notation AR@AN.

6.2 Experimental Setup

We used two distributed Nvidia Titan Xp GPUs with 12GB memory each for training our models.
For ablation studies, each method mentioned in feature enhancements was incorporated in isolation
from others, and all hyperparameters not specific to these modules were kept constant. These
hyperparameter settings were arrived through finetuning during experiment runs prior to conducting
ablations. General hyperparameter settings include the use of Adam optimizer with initial learning
rate of 1e-3, and weight decay 1e-4 and a ReduceLROnPlateau scheduler with patience 2 and decay
factor 0.5. Module-specific hyperparameters include: (1) Shift probability of 0.2 and maximum
temporal shift of 5 in either direction for the Temporal Shift module; (2) Hidden dimension of size
100 for the Squeeze and Excite module; and (3) Same hyperparameter settings as foward counterparts
for reverse ensembling. We’d also like to note that while the baseline didn’t have dropout layers, we
added dropout layers with dropout probability 0.4 to both the TEM and PEM modules of the model
consistently in all our ablation studies.

6.3 Results

Figure 5: Total Train Loss Figure 6: Total Val Loss

From our results shown in Table 1, we are able to achieve an overall AUC of 67.5% using a
combination of temporal shifted data features, squeeze and excitation module and ensembling with
a reversed version of the model. This result represents a 0.9% increase in AUC compared to our
reproduction of the baseline model.

8



BMN Results [3] Our Baseline Reproduction TSM-SE-Ensemble

AR@1 33.6% 33.5 % 33.4%
AR@5 49.9% 48.0 % 49.8%
AR@10 57.1% 55.1 % 57.3%
AR@100 75.5% 75.1 % 75.4%
AUC 67.5% 66.6 % 67.5%

Table 1: Average Recall and AUC Results

Looking at Figure 5, we observe that the baseline implementation experiences strong signs of
overfitting starting from epoch 7 because the baseline validation loss start to inflect strongly upwards
from that epoch on-wards. This is likely due to the lack of expressivity of the feature vectors extracted
by the two-stream network. Furthermore, when we compare the validation loss of the baseline with
our improved version, we can see that our model still manages to decrease both training and validation
loss till the last epoch. As such, we note that a combination of using temporal shifted data features,
squeeze and excitation module and ensembling with a reversed version of the model enables the
model to better handle the issue of overfitting and outperform the baseline.

6.4 Ablation Studies

Modules Metrics
TSM Squeeze n Excite Reverse Ensemble AUC AR@100 Recall

Our Reproduction of Baseline 66.6% 75.1%

x 67.2% 75.2%
x 67.4% 75.3%

x 66.6% 74.8%
x 66.9% 75.0%

x x 67.2% 75.1%
x x 67.5% 75.3%
x x x 67.5% 75.4%

Table 2: Ablation Studies

To understand the contribution of each component in the model, we conducted a set of ablation
studies, with results on the ActivityNet validation dataset displayed in Table 2. The combination of
TSM, Squeeze and Excite, and our reverse ensemble model contributes the most significant increase
of 0.3 % in AR @ 100 Recall and 0.9% in AUC. The second best performance was achieved by TSM
and Squeeze and Excite with AR @ 100 Recall of 0.2 % over the Baseline and 0.6 % in AUC. It’s
interesting to note that the inclusion of Squeeze and Excite contributes the most for both metrics.
While the ensemble of the baseline model and our reversely mapped model did not outperform the
baseline on its own, when combined with TSM and Squeeze and Excite, it was able to accomplish
the best predictive performance.

6.5 Error Analysis

To elucidate the different causes of misclassification, we conducted error analyses across video sam-
ples of varying IoU scores below 0.5 (examples with IoU equal to or greater than 0.5 were categorized
to be correct) and categorized several potential sources of errors based on the sample’s reported
accuracy. The predominant cause of error for video examples with a lower IoU performance of [0,
0.3] was the ground truth’s annotations, namely its impreciseness in action labelling. One common
case was where the ground truth label failed to distinguish the foreground from the background
context; the said action did not directly occur in the video but the background did include objects or
images that were related to a certain action. For instance, in the "True Shingle Warranty Comparison,
CHATEAU ROOFING" video, the action is labeled as "roof shingle removal" when the speaker
merely verbally advertises his own roof shingle removal services in front of a static stock image of a
roof in the background throughout the entire 90 seconds. In this example, the ground truth failed

9

https://www.youtube.com/watch?v=IWdJF6lBSnM
https://www.youtube.com/watch?v=IWdJF6lBSnM


to tell the agent’s action apart from the visual cues provided in the background, which naturally
confused the model to also incorrectly identify a nonexistent "action."

Other detected cases of ground truth mislabelling include situations when the range do not contain
the labeled action, but rather the state before the said action occurs. In "Attack of the Curlers", the
removal process of curlers is not directly shown, but rather the before and after of removing are
compared and the labeled range includes the "before" state. We also found multiple examples where
the action is simply an inaccurate and abstracted summary of what actually happens in the video. In
"Waxing Furniture", the ground truth states that the identified action is "painting furniture," when in
reality, the labeled time range shows a person demonstrating how one can wax-paint a painted cabinet.
We hypothesize that such inconsistency in the training label precision and sequence detection, as they
were left uncontrolled for, inevitably impacted the model’s learning process.

For video samples that resulted in a higher IoU performance of [0.3, 0.5], model errors primarily
originated from a single action spanning the entire length of the video or appearing in multiple
moments throughout the video. In video "Jan Zelezny - 95.34m and 95.66m – Sheffield 29/08/1993",
the video is merely 7 seconds long and the action of "javelin throw" spans the entire length, for which
the proposal correctly suggests the entire length. In videos "My 3 year old’s first make up tutorial"
and "Lifting Challenge" , the ground truth labels action of " putting on makeup" and "snatch" at five
and three separate moments respectively. This again resulted in teaching the model to propose the
entire chunks of the videos in majority of its top 4950 proposals and miss the exact ranges by more
than 10 seconds in its shorter proposals. We hypothesize that the first case hindered the model’s
ability to accurately pinpoint the exact timestamp of the action’s occurrence, while the second, despite
adding variance and richness to training data, did not facilitate the model’s learning in appropriately
narrowing down its predicted ranges to correctly capture each and every fragment.

7 Discussion and Future Work

A major limitation that we faced is the the lack of expressivity of the feature vectors generated from
the two-stream network. This severely restricted our ability to experiment with the methods that
increase model complexity due to the problem of overfitting. Future work can experiment with
alternative feature extractors as MMAction2 by OpenMMLab [21]. Furthermore, future work could
also leverage the multi-modalities of the video dataset and perform multi-modal learning to augment
the visual features with audio information[12]. This would allow for more model complexity and
room to experiment.

While our work successfully achieved a superior performance over the baseline, future experiments
can build upon our exploration of data augmentation methods to further improve generalization. The
foreground-background confusion was the main source of errors for video samples with lower IoU’s
where the model failed to discriminate between videos that feature a true action and those do not.
This phenomenon can potentially be mitigated through following three methods: 1) adding "pseudo
video samples" with just static backgrounds and labelling them as "no action" 2) calculating the
amount of motion involved in each sample over time to add as a feature and let the model learn to
disregard static images (by incorporating sequence-based models such as attention mechanisms[20]).
or 3) detecting static backgrounds and replacing them with randomized backgrounds to prevent the
model from learning a "pattern" in the background as a clue for the action label.

8 Conclusion

In this paper, we identified the severe overfitting challenge present in the state-of-the-art BMN model
caused by the feature vectors extracted by the two-stream network. Furthermore, we sought to
improve its generalizability through three different techniques including Temporal Shift augmentation
method, Squeeze and Excite module, and ensembling with another model trained on time-reversed
video features and labels. Through our extensive experiments, we demonstrate that a combination
of these three techniques largely curb the issue of overfitting. Although severely limited by the
expressivity of the feature vectors, we managed to achieve an AUC score of 67.5%, resulting in a 0.9
point increase compared to our reproduction of the baseline.
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