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Abstract

Model probing is widely used to investigate
which linguistic properties are readily accessi-
ble in the embeddings of pretrained language
models. However, does that necessarily mean
that the information encoded in model repre-
sentation is actually useful for end tasks? In
this work, we propose an empirical framework
for end-to-end model probing, which probes
the model to analyze the correlations between
performance on probing and end-tasks on a
system- and example-level. We probe multiple
linguistic properties as probing tasks and find
that (1) models with a better understanding of
the sentence structure and proper nouns can
better identify the entailment relations between
two sentences (2) successfully detecting the
semantic relationships in the higher layers is
crucial in more complex tasks like paraphrase
detection and natural language inference.

1 Introduction

When a child learns a language, they’ll most likely
start by picking up a few words from their care-
givers. Will they immediately be able to say a
simple sentence or two? Perhaps, yes. Will they
now be able to read lengthy passages to answer
questions or draw inferences about the information
contained therein? This is much more unlikely.
If the second task seems quite implausible, what
specific knowledge would the child need beyond
substantial vocabulary and rudimentary syntactic
structures?

Model probing is a widely-studied field in the
area of NLP (Belinkov, 2022; Ousidhoum et al.,
2021; Jin et al., 2019; Hohman et al., 2019), where
researchers examine whether certain linguistic com-
petencies (e.g. basic syntax and semantic under-
standing) are encoded in the representations of a
language model trained on vast amounts of lan-
guage data. The current probing paradigm has
achieved this by training a classifier for specific lin-
guistic properties such as semantic tagging, syntac-

tic chunking, or part of speech tagging, and evaluat-
ing its performance to determine whether a model
has encoded the information necessary to easily sur-
face these properties. However, while a classifier’s
performance can confirm that the model contains
information about a specific linguistic property, it
cannot validate whether that linguistic competency
is actually used in a end task such as sentiment anal-
ysis, semantic similarity calculation, paraphrasing,
or inference. For instance, if the model were to
calculate the semantic similarity of the following
two sentences, “he ate salad with a fork” and “he
ate salad with a dressing,” we want to know if the
model is able to tell whether he had also eaten the
fork or the dressing along with the salad through
grasping the intrinsic semantic differences between
the two sentences (further detailed in Section 2).

Going back to our analogy of a child above, we
want to investigate whether mastery of simple tasks
(i.e., understanding vocabulary and grammar) is
truly necessary for a language model, as it is for
a child, to competently solve complex tasks (i.e.,
reading comprehension). We hypothesize that (1)
nontrivial correlations between probing tasks and
end tasks exist (2) different end tasks focus on
different linguistic abilities (3) end-to-end probing
can help deductively diagnose the causes of errors
in the end tasks by attributing the success or failure
of the probing tasks.

We present a model-agnostic end-to-end model
probing framework', which generates pseudo-
labels for probing tasks and uses them to probe
a pre-trained encoder. At the system level, our
predictions for both the end-task and various prob-
ing tasks showed that different end tasks require
different probing task information, while on the
instance level for each end-task, fine-tuning the
pre-trained encoder for each end task enabled fine-
grained analyses which shed light on the specific

"We release our code and data in https://github.
com/neulab/end2end-probing.


https://github.com/neulab/end2end-probing
https://github.com/neulab/end2end-probing

linguistic properties each particular end task relies
on. We aim to enable researchers to diagnose the
strengths and weaknesses not only for a system
but also on a single instance, interpret relationships
between multiple systems, and examine prediction
results to help us to better understand how models
learn and how they can be improved.

2 Background

Probing Task and End Task Within the context
of our work, probing tasks are those that involve
more simple and fundamental operations in nat-
ural language processing such as part-of-speech
and named entity recognition. End tasks are those
that entail more complex operations such as senti-
ment analysis, text entailment, sentence similarity
or equivalence, and grammaticality.

Probing Probing is a method for examining
whether certain linguistic competencies (e.g. basic
syntax and semantic roles) are encoded in large lan-
guage models such as BERT (Devlin et al., 2018).
Specifically, edge probing (Tenney et al., 2019b)
measures the encoding of linguistic information in
large pretrained language models by decomposing
each structured task into a set of graph edges that
can be predicted independently using a common
classifier architecture. In an edge probing exper-
iment, a language model is trained on a specific
text corpus, then tested on a series of tasks to eval-
uate its performance to assess how the model has
encoded the sentence structure across a range of
syntactic, semantic, local, and longer-range phe-
nomena.

Adversarial Attacks Adversarial Training (AT)
has been used as a method to evaluate a model’s sus-
ceptibility to purposely designed incorrect exam-
ples and improve robustness across various tasks.
For text classification, Ebrahimi et al. applied
white-box adversarial training on the Stanford Sen-
timent Treebank (SST) dataset to trick the model’s
character-level neural classifier with an atomic flip
operation that swaps tokens based on the gradients
of the one-hot input vectors. Instead of relying on
an automatic example generator, Yin et al. man-
ually collected grammatical errors made by non-
native speakers to simulate adversarial attacks on
clean text data to diagnose the degree of impact
across different tasks including Entailment, Named
Entity Recognition, and Sentiment Analysis. The
authors also devised a custom linguistic accept-

ability task which revealed the model’s abilities in
identifying grammatically incorrect sentences and
the position of errors. For Part-of-Speech Tagging,
Yasunaga et al. applied adversarial training on the
Penn Treebank WSJ corpus and the Universal De-
pendencies (UD) dataset across 27 languages to
see improved tagging accuracy for rare words and
for low-resource languages and an indication of the
improved tagging performance contributing to the
end task of dependency parsing.

Evaluation Methods CheckList (Ribeiro et al.,
2020) and Explainaboard (Liu et al., 2021) are
the two recently developed methods for inter-
pretable evaluations the former being a task-
agnostic methodology for testing NLP models
across a matrix of general linguistic capabilities
that facilitate comprehensive test ideation and the
latter achieving the same objective with broader
coverage of 400 systems, 50 datasets, 40 languages,
and 12 tasks. ExplainaBoard (Liu et al., 2021) in-
troduced the method of bucketing, which partitions
results into different groups based on the defined
features, visualizes the test samples’ performance
with respect to each bucket, and allows the users
to see the corresponding errors. Despite its novel
approach, the ExplainaBoard remains a static visu-
alization tool rather than a fully-functioning, versa-
tile interface that processes the data across different
tasks, integrates mainstream probing paradigms,
and evaluates language competency on a real-time
basis. We aim to fill this gap with a front-end web
application portal that conducts interactive data
analysis, provides interactive data analysis, and
accepts model submissions.

3 End-to-End Probing

3.1 Sandbox vs End-to-End Probing

One major limitation of the existing probing meth-
ods is that they probe models using out-of-domain
data, which results in an inherent disconnect be-
tween the probing task and the end task. As an ex-
ample, (Tenney et al., 2019a) probed the OntoNotes
datasets and founded the classical NLP pipeline
for QA within BERT. While the probing tasks had
learned the OntoNotes data, the models had learned
different task-specific data while finetuning for the
end task (QA). We refer to this type of probing
that dominates the current paradigm as sandbox
probing.

While sandbox probing may allow researchers
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Figure 1: End-to-end model probing framework with CoL A as end task example. Parameters inside the dashed line
area are fixed. Multiple pseudo-labels are generated for a given end task instance using the corresponding taggers.
For PoS and NER, only a single span is used for one label. For DEP and SRL, two spans are used. We apply edge
probing and train separate multi-layer perceptrons (MLP) for each probing task using span representations as input
to predict labels. Since there might be more than one pseudo-labels for one end task instance, we aggregate the
metric for each probing task as instance-level metrics. For the end task, we fine-tune the pretrained encoder and use
sentence representation to predict the end task label. We then aggregate all the case-level metrics and predictions to

obtain a system-level metric.

to detect the presence of a linguistic property in
the embeddings, it does not shed light on whether
that property was actually used in the end task.
There has been no empirical study that focused
on the utilization of the found linguistic feature to
our knowledge. To bridge this gap, our work pro-
poses end-to-end probing, which uses in-domain
data to probe models by generating pseudo-labels
of end tasks as probing datasets. The following are
our research questions: (i) Which linguistic tenden-
cies encoded in pretrained model are helpful for a
certain end task? (ii) Are there meaningful correla-
tions between the edge probing results for probing
tasks and end tasks? (iii) What are the common-
alities across sentences that perform well/not well
across the majority of tasks?

3.2 End-to-End Model Probing Framework

Our end-to-end probing framework consists of the
following steps: (1) We use the input tokens of
an end task instance as inputs for the probing task
tagger to generate pseudo-labels. (2) The pseudo-
labels are then used as the training data for the
probing tasks. (3) We freeze the pre-trained en-
coder and obtain span representations using token
representations from layer L;. (4) We train multi-
layer perceptrons (MLPs) for each of the probing

tasks using pseudo-labels. (5) We fine-tune the pre-
trained encoder using sentence representation of
the input to achieve the end tasks. Figure 1 shows
the entire end-to-end model probing framework.
We used nine different text classification tasks
from the GLUE benchmark (Wang et al., 2018) as
end tasks and four tasks that cover syntactic and
semantic properties (Dependency Parsing, Part-of-
Speech Tagging, Named Entity Recognition, and
Semantic Role Labeling) as probing tasks.

3.2.1 Probing Tasks

Part-of-Speech Tagging (PoS) is the process of
tagging a specific part-of-speech label for each to-
ken in sentence. We take a span with length 1
containing token representation h; at position ¢ as
probing input and predict the corresponding PoS
tag using the Flair PoS tagger from HuggingFace.

Named Entity Recognition (NER) classifies en-
tity mentions in unstructured text into pre-defined
entity categories for a single span. We use the NER
tagger from Flair with 4 entities: person names
(PER), organizations (ORG), locations (LOC), and
miscellaneous (MISC).

Dependency Parsing (DEP) examines the de-
pendencies between the phrases of a sentence in



order to determine its grammatical structure. We
take the span representation s; and s; as input and
predict the dependency relation between the tokens
i and j. We use the DEP tagger from StanfordNLP
with 50 different grammatical relations.

Semantic Role Labeling (SRL) is a semantic
analysis technique that analyzes the predicate-
argument structure of sentences. It focuses on the
predicate of the sentence and aims to predict the re-
lationship between the components in the sentence
and the predicate. We use the SRL tagger from
AllenNLP with 64 labels.

3.2.2 Probing Classifier

A standard probing classifier trains the probing
task using internal representations from the target
model with target model weights frozen. Instead,
we use edge probing to obtain token representations
of a span from the pretrained model and train a
classifier (multi-layer perceptron) to predict a given
linguistic property (probing task). Specifically, we
convert all language property prediction tasks into
span classification tasks and the representations
from start to end tokens are concatenated as span
representation inputs to probing classifiers. This
allows the performance of the probing classifier to
reflect whether the pretrained encoder has learned
relevant information for the property.

3.2.3 Models

In order to investigate the quality of language rep-
resentations, we conduct probing tasks on two
transformer-based pretrained encoders, BERT and
RoBERTa.

BERT Devlin et al. is designed to pre-train deep
bidirectional representations from an unlabeled text
by jointly conditioning on both left and right con-
text in all layers. It has become the baseline for
most natural language processing tasks due to its
conceptual simplicity and empirical success.

RoBERTa Liu et al. combines the removing the
Next Sentence Prediction (NSP) objective, training
with larger batches and longer sequences, and dy-
namically changing the mask pattern to achieve a
better performance than BERT.

3.2.4 Evaluation

For the end-task evaluation, we use Matthews Cor-
relation for CoLA, Pearson Correlation for STSb,
and accuracy for the rest of the GLUE benchmark
tasks. We use accuracy for all four of the probing

tasks. Since we may have multiple pseudo-labels
for a single instance, we aggregate accuracies of
probing predictions in one instance to an instance-
level metric, then aggregate all instance-level met-
rics in a dataset to a system-level metric.

4 Experiments

4.1 Experiment Settings

We probe all layers by extracting representations
from bert-base-uncased and robert-base, hence
having two pre-trained models, 12 layers for each
pre-trained model, 4 probing tasks, and 9 end tasks.
This results in 216 systems, for which we identify
each system by {endtask;}_{model;}_{layery},
e.g. bert-base-uncased_cola_1I2.

4.2 System-Level Analysis

In this section, we present system-level probing
results under end-to-end settings. We generate
pseudo-labels for each input sentence of end tasks
and probed multiple language models with the
same input sentences on both probing and end
tasks.

Previous works have found that lower layers
of a language model encode more local syntax
while higher layers capture more complex seman-
tics (Van Aken et al., 2019). In addition to simply
obtaining the overall results for each model, we
also aim to study how information on linguistic
properties is encoded in different layers of the pre-

trained encoder.
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Figure 2: Layer-wise probing performance of bert-base-
uncased model after Z-normalization. Higher values
indicate better performance.

Figure 2 shows the z-normalized performance
on each individual task. We noticed that probing
tasks perform better with representations of middle
layers. For semantics-related end tasks, the models
with more layers outperform more shallow models,
which indicates that global semantic information
from higher layers plays a crucial role in solving



complex tasks like natural language inference and
paraphrase detection.

4.2.1 Probing Task Correlation Analysis

In addition to understanding layer-wise behavior,
probing results also shed light on relationships be-
tween different NLP tasks as shown in Figure 3. We
further analyzed the pair-wise statistical correlation
between tasks based on the probing score of several
candidate models. In the correlation heatmap, we
have conducted end-to-end probing on a candidate
model m, thus obtaining the performance score
on the i-th end task s; ;. Accordingly, we also
evaluated the model on four probing datasets gen-
erated by SOTA taggers and extracted the probing

performances {s7<", sP°° 557 %P} All experi-

VR B Y
ment results are aggregated across different models
to get performance vectors for the ¢-th end task
{si,sper, sbo% ssml s‘iiep }. We further calculated the
Pearson’s correlation coefficients between all pairs

of end and probing task performance vectors.
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Figure 3: Pearson correlation score matrix under sand-

box(up) and end-to-end(bottom) probing settings.

Sandbox Probing

In Figure 3, we observed several probing tasks
showing high correlations with end tasks. Firstly,
Named Entity Recognition and Dependency Pars-
ing showed a consistently high correlation with nat-
ural language inference tasks (QNLI and MNLI),
which indicates that models with a better under-
standing of the sentence structure and proper nouns
can better identify the entailment relations between
two sentences. SRL and POS tagging show a
stronger correlation with the QQP task than others,
indicating that successfully detecting the semantic
relationships between the predicates and arguments
is crucial in paraphrase detection.

We also notice that CoLA and WNLI have con-
sistently low correlations under both sandbox and
end-to-end settings. As for CoLA, The input sen-
tences are very short and the syntactic structures
tend to be simple. Both shallow and deep models
can easily achieve high performance on probing
tasks, while only deep models can achieve a de-
cent performance for the end task. For WNLI, the
end task itself is quite difficult, hence all candidate
models’ performances are more or less the same,
which leads to low correlation.

The above observations dovetail with our hy-
potheses regarding the desired linguistic properties
for the final task. As more probing experiments
are performed on a greater number of heteroge-
neous language models, a more comprehensive set
of correlation coefficient results will be collected.

4.2.2 System-Level Ablation Study with
Regression Model

We perform a regression analysis to predict the
end task performance using the probing task per-
formance as input features. Our baseline is trained
with random values sampled from Gaussian distri-
bution with a mean of 0 and a standard deviation
of 0.1 2. To evaluate the regression model, we use
the relative reduction rate of the Root Mean Square
Error (RMSE) compared to the baseline model. We
obtain all RMSE with 5-fold cross validation and
conduct ablation study by removing one probing
task at a time. Table 1 shows that different end
tasks acquire different probing task information,
and using performance of all probing tasks does
not result in the highest prediction performance.
We notice that the English characters in CoLA only
has lower case, and thus the probing task taggers
find it difficult to obtain high quality pseudo-labels.

4.3 Fine-Grained Probing Analysis

In the previous section, we discussed how to use
holistic performance scores to predict end-task
performance and calculate task correlations. An-
other advantage of end-to-end probing over sand-
box probing is that we are able to conduct a more
fine-grained instance-level probing. The conven-
tional out-of-domain sandbox probing methods can
only analyze at the system level due to the misalign-
ment of probing data and end-task data. However,
as is shown in Figure 1, end-to-end probing gener-
ates aligned probing performance for each end-task

Monte Carlo simulations with N=500



CoLA SST STSB  WNLI QNLI  MNLI RTE QQP  MRPC

-POS | 17.39% 34.95% 49.27% 6.46% 50.22% 51.05% 39.75% 43.85% 56.28%
-NER | 12.10% 42.05% 36.89% 12.13% 25.80% 34.92% 45.00% 34.79% 32.34%
-DEP | 23.93% 57.69% 49.45% 1.60% 48.39% 54.48% 54.65% 47.12% 48.60%
-SRL | 22.08% 56.01% 52.58% 6.44% 48.17% 50.88% 61.32% 31.49% 57.56%
All | 1411% 4429% 52.32% 10.76% 43.79% 50.00% 55.71% 30.24% 55.78%

Table 1: System-level ablation study to predict end-task performance with probing task features. The metric
represent relative reduction rate of RMSE comparing to baseline model. -POS means removing POS performance

from the feature set.

POS NER DEP SRL | CoLA SST MRPC WNLI QNLI RTE QQP

baseline 0.685 0.519 0.663 0.560 0.500 0.550 0.819

+POS v 0.805 0.560 0.908 0.568 0.903
+NER 4 0.907 0.848 0.905

+DEP 4 0.800 0.921 0.547 0.561 0.910

+SRL v | 0.803 0902 0.839 0520 0.908 0.619 0.909

Full model ¢ 4 v v | 0830 0917 0.868 0.622 0912 0.694 0912

Table 2: Instance-level ablation study to predict end-task performance with probing task features.

instance, which makes it possible for fine-grained
error analysis and model evaluation.

4.3.1 Case Error Analysis with Probing
Results

Sent1: Sony said the PSP would also feature a 4.5-inch LCD screen.
Sent2: It also features a 4.5 in back-lit LCD screen .
True Label: Equivalent, Predicted Label: Non-Equivalent

"ner_acc": 1.0, "pos_acc": 0.93, "srl_acc": 1.0, "dep_acc": 0.8125

Question: In what city's Marriott did the Panthers stay ?
Sentence: The Broncos ... and stayed at the Santa Clara Marriott.
True Label: Not Entailment, Predicted Label: Entailment

"ner_acc": 0.6, "pos_acc": 0.96, "srl_acc": 1.0,"dep_acc": 0.95

\

Figure 4: Error cases sampled and adapted from
MRPC (up) and QNLI (bottom) development split. The
instance-level accuracies correspond to the probing re-
sults of the second sentence in each case.

We first introduce a use case for end-to-end prob-
ing on fine-grained error analysis. In Figure 4, we
select two failed cases in MRPC and QNLI to ana-
lyze their causes of failure. The first case is para-
phrase classification, which is to determine whether
a pair of sentences have the same meaning. We can
see that the instance-level POS and DEP scores
are low. After parsing the probing predictions, we
found that the model misclassified the word in as
a preposition instead of a noun, which thus led
to the incorrect prediction of the dependency tree

structure. This could be the reason why the probed
model thinks the sentence pairs are not equivalent.
The second case is sampled from the task QNLI,
which aims to test whether a sentence contains the
answer to a given question. The question is asking
about the Panthers, and the sentence is describing
the Broncos, so the sentence doesn’t have a relevant
answer, but the model thinks it does. One might
simply attribute the failure to the model’s lack of
long-range context dependencies, yet we also no-
ticed that the model misclassified Santa Clara Mar-
riott as an organization instead of a location in the
probing test, which indicates that the model also
failed on local context understanding.

4.3.2 Instance-Level Ablation Study

To better understand which linguistic properties
a particular end task relies on, we built a classifi-
cation model which takes probing performances
as features to predict the true label for the end
task. As discussed in section 4.2.1, we aggregate
instance-level probing results for each model on
the in-domain probing datasets, then take the aver-
age of the performance scores across all the tested
models as the training features. We add one fea-
ture at a time to see the performance change in the
prediction accuracy. We choose a trivial baseline
model, which only takes the frequency of model
predictions as the single feature, which is equiva-
lent to the majority vote. If the prediction score
changes a lot after ablation, this linguistic feature



has a greater impact on the final task.

The results show that after adding instance-level
probing performance, the prediction accuracy in-
creases from 0.2 to 0.4. The POS feature plays
an important role in sentiment analysis. Depen-
dency parsing shows more influence on datasets
with longer context and complex sentence struc-
ture, such as MRPC and QNLI.

5 Related Works

5.1 Model Performance Prediction

Recent work has consistently demonstrated the va-
lidity of predicting model performance without
training the model. (Xia et al., 2020) used a collec-
tion of language typological and statistical features
on machine translation and cross-lingual NLP tasks.
(Ye et al., 2021) breaks down the holistic perfor-
mance into different interpretable parts for fine-
grained performance prediction. Instead of gener-
ating features from datasets, (Zhu et al.) conducted
probing tests on several out-of-domain diagnose
datasets and utilized the probing scores to predict
the finetune performance. In end-to-end probing,
we also use the probing scores as the prediction
features. However, the main difference is that we
investigated both the in-domain and out-domain
probing datasets.

6 Conclusion

We introduce an end-to-end probing framework
that resolves the disconnect between the probing
and end tasks and have confirmed all three of the
hypotheses to be true: (1) nontrivial correlations
between probing tasks and end tasks exist (2) dif-
ferent end tasks target different linguistic abilities
(3) end-to-end probing can provide fine-grained
insights. We anticipate a more comprehensive anal-
ysis to be made available as we include additional
natural language inference tasks.

Our end-to-end model probing framework is
model agnostic and can be applied to other end
tasks, such as text generation tasks, and to other
domains such as bioinformatics. Researchers can
gain insights into the inner workings of the model
on a variety of tasks and domains by analyzing
strengths and weaknesses through system-level and
instance-level performance analysis. The future
research direction can focus on developing a strat-
egy to improve the model on its weaknesses and
reiterate the end-to-end model probing process.
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