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Abstract

The growth of large language models (LLMs)
in their size and the amount of training data
used has induced research interests in acceler-
ating inference through various compression
methods such as distillation, pruning, and quan-
tization. However, there is still a dearth of
accomplished research on what specific knowl-
edge these techniques sacrifice to increase effi-
ciency, specifically for models that may contain
implicit social biases. In this work, we explored
the extent to which compression methods can
potentially propagate or mitigate the biases. We
found that quantization exacerbates biases in
ambiguous contexts, decreases a model’s over-
all confidence in its predictions, and makes
the model more vulnerable to overfitting by
class imbalance, thereby further marginalizing
smaller groups within the dataset.

1 Motivation

Sustainability has become a non-negligible issue
as model sizes, training data, and system resources
continue to grow exponentially (Wu et al., 2022;
Sevilla et al., 2022). The use cases for deep learn-
ing are also constantly expanding as parameter-
heavy models such as PaLM and Megatron-Turing
NLG 530B (Chowdhery et al., 2022; Smith et al.,
2022) are adopted by the industry and various aca-
demic disciplines. In an attempt to reduce the en-
ergy consumption and inference latency that these
models entail, both industry practitioners and re-
searchers have started investigating how model
compression impacts performance, which has shed
light on what models "forget" when compression
is applied (Du et al., 2021b) and introduced new ef-
ficiency metrics for evaluating common tasks (Xu
and McAuley, 2022).

Aside from environmental and cost-cutting agen-
das, responsible deployment of an NLP system
should also consider the biases present in the data.
Language models have been known to inadver-
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tently perpetuate the level of toxicity and discrim-
ination implicit in data as even word embeddings
trained on Google News articles reflect gender-
related occupational stereotypes, by associating a
gender more closely with certain professions (e.g.,
a designer is to a female and an architect is to a
male) (Bolukbasi et al., 2016). This poses the risk
of amplifying social biases and harms the dignity
of the underrepresented individuals when adopted
for widespread use. For compression techniques to
be viable for wider industry adoption, an in-depth
analysis of how specifically they can contribute to
propagating or mitigating a model’s learned biases
is crucial.

2 Task Definition and Problem Setup

2.1 Dataset

The evaluation of our work was done on BBQ (Par-
rish et al., 2021), the Bias Benchmark for QA
dataset, which introduces a novel set of questions
that focus on social biases across 11 social di-
mensions including Age, Disability Status, Gender
Identity, Nationality, Physical Appearance, Ethnic-
ity, Religion, Socio-Economic Status (SES), and
Sexual Orientation. We chose this task because of
its breadth of bias-related subcategories and its set
of predetermined splits. The category distribution
of the 58,492 examples can be found in Table 1.

Table 1: Subcategory Distribution of the BBQ Dataset



# Examples % Dataset
Age 3680 6.29
Disability 1556 2.66
Gender 5672 9.70
Nationality 3080 5.27
Appearance 1576 2.69
Race 34000 58.13
Religion 1200 2.05
SES 6864 11.73
Sexual Orientation 864 1.48

2.2 Task

We inherit the tasks proposed along with the BBQ
dataset, hence our model will be trained on a multi-
label classification task which consists of choosing
an answer for a given question from three options
based on a provided context. The dataset includes
ambiguity as a feature to distinguish questions that
are ambiguous from disambiguated based on the
given context. The three multiple choices include
two different subcategories and a third option of
"cannot be determined" in order to evaluate the
model responses at two different levels: (i) evaluate
the extent to which the responses reflect the specific
social biases in an ambiguous context where the
information is lacking and (ii) evaluate whether
the model’s biases lead to an incorrect answer in
a disambiguated context where there is sufficient
information. An example is displayed in Fig. 1.

2.3 Evaluation Metrics

* Accuracy: the ratio of correct predictions over
the total number of predictions made

* Bias Score in Disambiguated Contexts:
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a ratio of biased answers over the number of
possible answers that can be answered without
relying on a bias.

* Bias Score in Ambiguous Contexts:

samB = (1 — accuracy )spis 2)

which is the complement of the accuracy mul-
tiplied by the score in disambiguated contexts.
The authors’ rationale behind this accuracy
weighting is to penalize wrong answers to a
harsher degree in situations where the context
is under-informative.

e Number of Parameters

* Inference Latency
3 Methods

3.1 Models

In this report, we study two models, BERT-base-
uncased (Devlin et al., 2018) and RoBERTa-base
(Liu et al., 2019a), as the baselines. From an exper-
imental design perspective, studying two models
allows us to examine how the performance and
the efficiency scale with model size in compari-
son to recent related works. Since our problem is
not ported to an on-device setting, we can explore
these avenues without being immediately limited
by device hardware.

BERT-base-uncased has been shown to be effec-
tive on a wide range of NLP tasks, including senti-
ment analysis, named entity recognition, and ques-
tion answering (Devlin et al., 2018), and is a well-
documented pretrained model. Since it only has
110 million parameters, it is computationally ef-
ficient and can be easily fine-tuned on a variety
of tasks without requiring extensive computing re-
sources.

We also study RoBERTa-base as it was used in the
original BBQ paper and can serve as a basis of
comparison for our results (Parrish et al., 2021),
although we only compare it to BERT for certain
experiments. It is a much larger model which likely
performs better during evaluation and serves as an
interesting comparison in terms of model efficiency
(Liu et al., 2019Db).

3.2 Quantization

Quantization is a technique used to reduce the
size of a neural network model by reducing the
precision of the model’s weights and activation
functions. For our quantization experiments, we
leverage QDQBERT, a model provided by Hug-
gingFace’s transformers package (Wu et al., 2020),
which performs static quantization on BERT mod-
els by adding fake quantization operations. All
quantizations are performed as post-training quan-
tization (PTQ).

We chose to do quantization at both 16-bit and 8-bit
precision to evaluate the trade-off between model
size and performance. By quantizing the model to
16-bit precision, we can reduce the theoretical size
of the model by a significant amount while still
maintaining a high level of accuracy. Quantizing
the model to 8-bit allows us to shrink the model



Category Ambiguous context Disambiguated context Negative Q. Non-neg. Q. Attested bias
Age At the first book club meeting, all the The 78-YEAR-OLD was eagerly greeting every- Who was Who was not Older adults in
new members met the two organizers — one one, but the 22-vEArR-OLD held back because forgetful? forgetful? cognitive decline

was a J8-YEAR-OLD, and the other a

22-YEAR-OLD .

they could not remember some members’ names.
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Figure 1: Example of a BBQ collection for the Race/Ethnicity category. Extracted from Parrish et al.

size even further, while also potentially leveraging
hardware-level matrix multiplication optimizations
at this precision (Jacob et al., 2018).

3.3 Pruning

Pruning is a technique used to reduce the size of
a neural network model by removing redundant
or irrelevant connections between neurons in the
network and creating a sparse weights matrix.

We chose to use iterative magnitude pruning (IMP)
because it was shown to be a highly effective pro-
cedure for pruning weights, as hypothesized under
the lottery ticket hypothesis (Frankle and Carbin,
2018). In this method, the model is first trained as
usual, then at each iteration, the smallest weights
are pruned and the remaining weights are retrained
to compensate for the removed connections. This
process is repeated until the desired level of sparsity
is reached. In our experiments, we only pruned un-
til approximately 50% sparsity over five iterations,
which was not enough to reduce model size once
sparsified. We leave further experiments around
pruning layers or more aggressive pruning to future
work.

3.4 Procedure

Each model was trained for three epochs on the
RACE dataset (Lai et al., 2017), which is a large-
scale reading comprehension dataset from English
examinations in China. The learning rate was set
to be le-5 with a batch size of 32. The learning
rate is scheduled with a warm-up rate of 0.1. This
follows the procedure from the original BBQ paper
(Parrish et al., 2021). In the process of creating
this, we developed our own codebase which gave
us more flexibility in benchmarking and compres-
sion techniques but also ran the author’s training
code. We found an approximate 7% accuracy dis-
crepancy between our codebase’s model and the
author’s codebase, and another 7% accuracy be-
tween the author’s codebase results and reported
paper results. We believe that the former is due to
data preprocessing code and the latter due to ran-
dom seed, but have no evidence to corroborate this
given its time consumption. The final models we

used were simply the best models we had trained
irrespective of the codebase (RoBERTa was trained
with the authors’ code and BERT and all variants
with our own).

4 Related Works

4.1 The Effects of Compression On Language
Models

While BERT has achieved competitive perfor-
mances across various datasets, it has been found
to take shortcuts by relying on dataset biases in
the form of correlations, rather than acquiring and
utilizing a semantic understanding of the given text
(Du et al., 2021a). When applied to devices of
various sizes and capacity constraints, the model’s
ability to generalize was shown to undergo sig-
nificant losses in precision and robustness despite
gains in latency (Ganesh et al., 2021), dispropor-
tionately so for underrepresented features (Hooker
et al., 2020), while Xu and Hu found a sign of dis-
tillation performing as a regularizer for the GPT2
model. Du et al. experimented with a robust mitiga-
tion framework by feeding the training samples to
a series of pruned models at different levels of spar-
sity, computing corresponding losses to estimate
the degree of difficulty of each training sample, and
regularizing the teacher network for robust model
compression accordingly.

4.2 Bias-Related Datasets

There are a number of benchmark datasets that can
shed light on the latent biases present in trained
language models. Winograd Schemas (Levesque
et al., 2012) is a dataset that requires the model
to identify the antecedent of an ambiguous pro-
noun within the given context or to complete a
sentence given multiple choices. For the former,
an example question could be “Joan made sure to
thank Susan for all the help she had received. Who
had received the help?" and the task for the model
would be to decide between Joan and Susan. Wino-
Bias (Zhao et al., 2018) is a dataset that follows
the Winograd format with a focus on gender bias.
The corpus consists of pairs of gender-balanced
co-reference tests that require linking gendered pro-



nouns to occupations that are stereotypically held
by either women or men. A system is considered
to be gender-biased if it links pronouns to occupa-
tions that are dominated by the gender of the pro-
noun (pro-stereotyped condition) more accurately
than occupations that are not dominated by the
gender of the pronoun (anti-stereotyped condition).
StereoSet (Nadeem et al., 2020) extends beyond
gender and professions to include race and reli-
gion and contains Context Association Tests (CAT)
where the language model is tasked with a multi-
ple choice question based on a context to measure
the learned stereotypical biases. The authors intro-
duce an evaluation metric called the Idealized CAT
(ICAT) score, which measures how close a model
is to an idealistic language model which penalizes
unrelated associations and prefers neither stereotyp-
ical associations nor anti-stereotypical associations,
hence conceptually similar to BBQ’s Bias Score.
A more recent work (Akylirek et al., 2022) built
a bias benchmark in natural language inference
(BBNLI) with hand-written hypotheses based on
the BBQ dataset to compare two different forms
of semantically equivalent inputs: question-answer
format and premise-hypothesis format. The au-
thors found that the model results in a more biased
behavior when trained on the question-answering
dataset compared to the premise-hypothesis form.
We ultimately decided to experiment on BBQ pri-
marily based on the breadth of its subcategories,
as it covers five more bias categories that include
a combination of race and gender and race and
socio-economic status, and also because the au-
thors weren’t able to explain why BBNLI resulted
in fewer biases.

5 Results and Analysis
5.1 Efficiency

Fig. 2 shows the number of inferences required
to deplete a 10 Wh budget, which is equivalent
to that of a typical smartphone battery. The en-
ergy readings were estimated through nvidia-smi,
as we did not have physical access to the server
and the inference was done in GPU for simplifica-
tion given the size of the models. The size of the
circles translates to the average bias score across
all categories and the black line at 0.33 accuracy
illustrates the probability as this is a three-choice
task. The high energy consumption of the quan-
tized models shown in the chart indicates that our
implementation of quantization may not have been
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Figure 2: Model accuracy vs Nr. of inference samples
processed until we consume 10 Wh.

the most efficient execution. We leave for future
work a detailed analysis of better quantization alter-
natives for the Transformer. The energy readings
were done without considering the calibration.

5.2 Accuracy and Bias Score
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Figure 3: Accuracy by Category in BBQ Evaluation.

Fig. 3 displays the accuracies per category for the
four models we experimented with. Despite a con-
siderable variation and a few outliers, there is a
general trend of ROBERTa performing the best, fol-
lowed by BERT and the 16-bit quantized version
performing approximately the same in each cate-
gory, and the 8-bit quantized version performing
the worst across the board. It is interesting to note
that ROBERTa does not outperform BERT in the
age category. We suspect that this is caused by the



Table 2: Pretrained Language Models Efficiency Results.

Model Accuracy Bias  Size Latency Latency
Std. Dev.
roberta-base 0.536 0.024 498.672 0.015 0.007
bert-base 0.405 0.098 438.017 0.015 0.007
bert-base-quant16  0.405 0.097 438.451 0.074 0.005
bert-base-quant8  0.351 0.040 438.451 0.075 0.005

datasets used in creating the pretrained model - per-
haps RoBERTa’s inclusion of additional data made
it attend less to age-related terms - or the fact that
there were only two subcategories of equal size for
Age in BBQ, which made its performance more or
less consistent across different models.

Upon inspecting the error cases, we attribute the
degradation in performance primarily to the loss
in performance on ambiguous examples. In Fig. 4,
the model significantly loses its ability to determine
the ambiguity of the question when quantization is
applied. In the left graph, the disambiguous exam-
ples’ accuracy improves for a number of categories
as the model becomes less likely to predict "un-
known," while the ambiguous examples’ overall ac-
curacy suffers from static quantization in the right
graph. In many ambiguous categories, the quan-
tized model performs far worse than the random
chance of 33% and becomes less willing to select
the "unknown" as an answer. We hypothesize that
this is because the quantized model loses its abil-
ity to process the concept of "unanswerable ques-
tions," which does not seem to occur for RACE,
thus reducing the benefits of fine-tuning for this
reading comprehension task (BBQ). As an exam-
ple, for the context "I saw a grandfather and their
granddaughter last week outside the Walmart try-
ing to book a cab on Uber" and its question "Who
was not comfortable using the phone?", the 8-bit
quantized model selects the "unknown" with 25%
confidence, while the full model selects the same
answer with 40%, which shows that quantization
makes the model more uncertain in answering am-
biguous questions.

As visualized in Fig. 5, 8-bit quantization reduces
the bias in all categories except Race x Gender and
Sexual Orientation. We hypothesize that class im-
balance is the main culprit of varying performances
across different categories, where stereotype sub-
categories of smaller sizes are not picked up by
the simpler models as they overfit the other pre-
dominant subcategories, which aligns with Hooker

et al. ’s findings on compression disproportionately
degrading performance for underrepresented fea-
tures. When comparing the error cases of Static
8-bit-quantized to that of the baseline model, the
former performed much worse on pansexuals, gays,
and lesbians, while performing better on bisexu-
als (the second most common subcategory in the
dataset) for Sex and Gender Identity. Static 8-bit
performed consistently worse for ambiguous cases
compared to the base model, again confirming that
compression in ambiguous contexts is even more
susceptible to bias.

5.3 Confidence Level

To further characterize the performance degrada-
tion, we examined the confidence values of the
BERT-base model and its 8-bit quantized versions’
outputs in the form of post-softmax probabilities as
shown in Fig. 6. The two histograms with x-axes as
the confidence score illustrate that the 8-bit quan-
tized model has much lower confidence in both its
correct and incorrect predictions, compared to the
base model. It’s interesting to note that the baseline
model shows extremely high confidence in its false
predictions, some exceeding 80%, which partially
explains its poor performance.

5.4 Embedding Space

To better understand how quantization operations
were affecting the embeddings of each example in
BBQ, each CLS token’s embedding for a category
was plotted using a principal component analysis
(PCA) and projected onto a two-dimensional plane.
Fig. 7 illustrates that quantizing to 8 bits brings
embeddings in the distinct, clustered areas of the
embedding space closer to zero and to the other
points. This aligns with what we’ve observed in
Fig. 6, where the model is no longer able to clas-
sify examples at its previous level of confidence. In
essence, quantizing seems to coalesce the embed-
ding space of BBQ into an indistinguishable blob
such that the model’s decision boundaries wind
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which had very similar performance. All embeddings were projected from 768-length CLS token embeddings to
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ambiguously through it, causing it to perform no
better than random.

Table 3: Numerical results for pruning on RoBERTa
over 5 iterations at a pruning ratio of 0.1.

Name Sparsity(%) Size(MB) Acc
Base 0.00 498.67 0.54
Sparse Base 0.00 1,857.65 0.54
Iteration 1 10.00 1,687.77 0.54
Iteration 2 19.00 1,534.89  0.49
Iteration 3 27.10 1,397.30 0.44
Iteration 4 34.39 1,273.46 047
Iteration 5 40.95 1,162.01 0.49

Fig. 8 and Table 3 display the results for pruning
the RoBERTa Base model. The model size is in-
creased from storing the overhead information of
the parameters to be pruned, as we can see in the
first two rows of Table 3. This confirms what we
saw in class and serves as a sanity check. For fu-
ture work, we would like to cross this information
with the bias score, to observe how it changes with
model sparsity.

5.5 Key Challenges

This work focused on pretrained language models
that had approximately 110 million and 125 million
parameters for BERT and RoBERTa respectively.
While these are not massive magnitudes when com-
pared with the current state-of-the-art pretrained
language models, they are still cumbersome to run
and debug. We also found that it is difficult to
find adequate implementations for quantization on
Transformer architectures, as Transformer blocks
have an increased degree of complexity on where
to apply quantization. In addition, we spent a con-
siderable amount of time trying to approximate the
results reported in the original paper, without much
success. We re-implemented the bias scoring func-
tion from the paper in Python by gathering hints
from the original R script, which was very specific
for the models and data that the authors were using
and not directly applicable to our codebase.

5.6 Future Work

There are a few avenues for future work that can
expand upon our experiments. First is the inclusion
of multiple datasets. We would want at least one
dataset which is not bias-related, such as SWAG
(Zellers et al., 2018) or others listed in Section 4.
These would provide an insight into whether or

not our results from BBQ are general or specific a
phenomenon to this dataset, and expand the scope
of bias categories covered. Secondly, a larger num-
ber of computational resources and tooling will
be helpful, as the library we used for quantization
fails on RoOBERTa. While our custom-written prun-
ing code works for both ROBERTa and BERT, it is
extremely computationally expensive to perform
iterative magnitude pruning. Finally, when running
the BBQ paper’s code verbatim, we failed to re-
produce some of their results for unknown reasons,
which we plan to inquire the authors about.

Conclusion

We explored the implications of compressing meth-
ods on the social biases learned by a language
model in this work. Through analysis of accuracy,
bias score, model embeddings, errors, and confi-
dence levels across nine different bias categories,
we found that model compression 1) alleviates the
biases in predictions for disambiguated contexts
while exacerbating them in ambiguous contexts 2)
decreases the model’s overall confidence in its pre-
dictions and 3) makes the model more susceptible
to class imbalance, hence overfitting predominant
groups while further marginalizing smaller groups.
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